网上科普有关“sincostan度数公式以及常见角度数值”话题很是火热,小编也是针对sincostan度数公式以及常见角度数值寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
锐角三角函数是以锐角为自变量,以此值为函数值的函数。在直角三角形ABC中,我们把锐角∠A的正弦、余弦、正切和余切都叫做∠A的锐角函数。初中数学主要考察正弦(sin)、余弦(cos)和正切(tan)的计算公式。
正弦(sin)
在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=∠A的对边/斜边。
sin30°=1/2 sin45°=√2/2 sin60°=√3/2
余弦(cos)
在直角三角形中,任意一锐角∠A的临边与斜边的比叫做∠A的余弦,记作cosA,即cosA=∠A的临边/斜边。
cos30°=√3/2 cos45°=√2/2 cos60°=1/2
正切(tan)
在直角三角形中,任意一锐角∠A的对边与临边的比叫做∠A的正切,记作tanA,即tanA=∠A的对边/临边。
tan30°=√3/3 tan45°=1 tan60°=√3
三角函数顺口溜
正弦对比斜,余弦邻比斜,正切对比邻,正弦余弦互逆运算。
sin30°=cos60°=1/2
sin60°= cos30°=√3/2
sin45°=cos45°=√2/2
三角函数值与角度的关系
三角函数是数学中的一个重点,通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。下面我整理了《sincostan特殊角的三角函数值表图》,供大家参考!
1 特殊角函数值表图
1 sincostan相关方程式
1.数关系
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
2.商的关系
tanα=sinα/cosα?
cotα=cosα/sinα
3.平方关系
sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
4.积化合差公式
sinα·cosβ=(1/2)*[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)*[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)*[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)*[cos(α+β)-cos(α-β)]
5.和差化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
我推荐: 高中数学公式定理记忆口诀
6.三倍角公式
sin3α=3sinα-4sin^3α;
cos3α=4cos^3α-3cosα
sin0°=0,sin90°=1,sin180°=0,sin270°=﹣1,sin360°=0 ;
cos0°=1,cos90°=0,cos180°=﹣1,cos270°=0,cos360°=1 ;
tan0°=0,tan90°不存在,tan180°=0,tan270°不存在,tan360°=0
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
三角函数的诱导公式(六公式)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(α+k*2π)=sinα (k为整数)
cos(α+k*2π)=cosα(k为整数)
tan(α+k*2π)=tanα(k为整数)
公式二
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin[(2k+1)π+α]=-sinα
cos[(2k+1)π+α]=-cosα
tan[(2k+1)π+α]=tanα
cot[(2k+1)π+α]=cotα
公式三
任意角α与-α的三角函数值之间的关系:
sin(2k-α)=-sinα
cos(2k-α)=cosα
tan(2k-α)=-tanα
cot(2k-α)=-cotα
公式四
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin[(2k+1)π-α]=sinα
cos[(2k+1)π-α]=-cosα
tan[(2k+1)π-α]=-tanα
cot[(2k+1)π-α]=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2kπ-α)=-sinα
cos(2kπ-α)=cosα
tan(2kπ-α)=-tanα
cot(2kπ-α)=-cotα
公式六:
π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
诱导公式 记背诀窍:奇变偶不变,符号看象限。
或者也可以这样记:分变整不变,符号看象限。
关于“sincostan度数公式以及常见角度数值”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[甲寅公子]投稿,不代表平和号立场,如若转载,请注明出处:https://resphina.com/cshi/202504-73775.html
评论列表(4条)
我是平和号的签约作者“甲寅公子”!
希望本篇文章《sincostan度数公式以及常见角度数值》能对你有所帮助!
本站[平和号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上科普有关“sincostan度数公式以及常见角度数值”话题很是火热,小编也是针对sincostan度数公式以及常见角度数值寻找了一些与之相关的一些信息进行分析,如果能碰巧解...